Planning of Graspless Manipulation by Multiple Robot Fingers

1. Introduction
2. Problem Settlement
3. Manipulation Stability Measure
4. Manipulation-Feasibility Graph
5. Planning of Graspless Manipulation
6. Conclusion

Yusuke MAEDA (Univ. of Tokyo)
Hirokazu KIJIMOTO (NTT Communications)
Yasumichi AIYAMA (Univ. of Tsukuba)
Tamio ARAI (Univ. of Tokyo)
1. Introduction

Graspless Manipulation

to Manipulate Objects without Grasping

• No need to support all the weight of objects
• Complement to conventional pick-and-place
Planning of General Graspless Manipulation

Objective

- not only for a specific operation (e.g., pushing)
- in practical computation time

Geometrical and Mechanical Analysis

<table>
<thead>
<tr>
<th>Manipulation Type</th>
<th>Analysis Type</th>
<th>Irreversibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick-and-Place</td>
<td>Geometrical Analysis (Collision-Avoidance)</td>
<td>Reversible</td>
</tr>
<tr>
<td>Graspless Manipulation</td>
<td>Geometrical and Mechanical Analysis (Contact Force, Friction)</td>
<td>Irreversible (e.g., pushable but unpullable)</td>
</tr>
</tbody>
</table>
2. Problem Settlement

Assumptions

- Quasi-Static Planar Manipulation of a Polygonal Object
- Gravity and Coulomb Friction
- Circle-Shaped Robot Fingers
- No Slipping and Rolling of Fingers
- Contact-State Graph is Given
Planning Problem

Input:
• Initial and Goal Configurations of the Object
• Contact-State Graph

Output:
• Sequence of Positions and Contact Forces of Robot Fingers
Outline of Planning

Construction of Manipulation-Feasibility Graph

- Generation of Nodes
 - Select configurations with enough manipulation stability
- Generation of Arcs
 - arcs for object displacement, regrasping, and contact-state transition

Searching of Manipulation-Feasibility Graph

- cost assignment
3. Manipulation Stability Measure

Manipulation Stability Measure:

\[d_{\text{ij}} = \min d_{ij} \]

(minimum margin in all the friction cones)

- **Upper Limit of Finger Force**
- **i) non-sliding contact**
- **ii) sliding contact**

\[d_1, d_2, d_3 \]

... Stability Margin for Finger Force
Determination of Optimal Finger Forces

Optimal Finger Forces:
Maximize the Manipulation Stability Measure \(d \)

\[
\text{Linear Programming Problem}
\]

maximize \(d = \lambda^T d \)

subject to

\[
\begin{align*}
WRf &= Mg \quad \text{...Equilibrium Equation} \\
Af - c &\geq d \quad \text{...Stability Margin for Each Contact} \\
Bf &= 0 \quad \text{...Constraints for Sliding Contacts} \\
d &\geq 0 \\
\lambda &= [1, 0, \ldots, 0]^T \\
d &= [d, \ldots, d]^T
\end{align*}
\]
4. Manipulation-Feasibility Graph

C-Space in a Contact State

D.O.F. of C-Space: \(M + N \)

\(M \)...D.O.F. of Manipulated Object in the Contact State

\(N \)...Number of Robot Fingers

(\(M \leq 2 \))

Configurations of robot fingers are represented by their positions on the object surface.
Generation of Nodes

- Discretize C-Space
- Adopt nodes with enough stability measure
Generation of Arcs

Arcs in Manipulation-Feasibility Graph:

- **Arcs for Object Displacement**
 Moving object without changing finger positions

- **Arcs for Regrasping**
 Changing a finger position without object displacement

- **Arcs for Contact-State Transition**
 For instants of contact-state transition
• Connect neighboring nodes with directed arcs if each manipulation is enough stable
Arcs for Regrasping

- Connect nodes with bidirectional arcs if the object is stable without the regrasping finger.
Arcs for Contact-State Transition

Graph for Contact State 1

Graph for Contact State 2

Connect Identical Configurations in Different Graphs

A Manipulation-Feasibility Graph over Multiple Contact States
5. Planning of Graspless Manipulation

Obtain manipulation plan by graph searching

Planning Policies

• Avoid manipulation with low stability.
 ⇒ Discard arcs with low stability measure

• Primarily, minimize the number of times of regrasping.
 ⇒ Assign very large cost to arcs for regrasping

• Secondarily, Minimize the load of the robot fingers.
 ⇒ Assign cost c_{disp} to arcs for object displacement

\[c_{\text{disp}} = \sum \{(\text{finger force}) \times (\text{finger displacement})\} \]
Planned Result 1: Tumbling

Large Friction ($\mu = 0.5$)

Small Friction ($\mu = 0.2$)

Planning Time: 20 CPU Seconds (UltraSPARC-IIi 334MHz)
Planned Result 2: Composite Manipulation

Planning Time: 330 CPU Seconds
(UltraSPARC-IIi 334MHz)
A planning method for planar graspless manipulation based on mechanical analysis is proposed.

- Pushing and tumbling operations with regrasping are successfully generated.

Future Works
- Manipulation in 3D
- Incorporate Rolling of Robot Fingers on Object