Human-Robot Cooperative Manipulation with Motion Estimation

○Yusuke MAEDA, Takayuki HARA and Tamio ARAI
(The University of Tokyo)

1. Introduction
2. Virtual Compliance Control
3. Estimation of Human Motion
4. Experiments of Cooperative Manipulation
5. Quantitative Evaluation of Experimental Results
6. Conclusion
1. Introduction

Human-Robot Cooperative Manipulation

- Typical Human-Robot Cooperative Task
- Combination of Human Intelligence and Robot Power

[Al-Jarrah 97], [Luh 99], [H. Arai 00], [Kosuge 00], …
Human-Friendly Characteristics for Cooperative Manipulation

[Rahman 99]

• Variable impedance control of 1-DOF robot for human-robot cooperative manipulation
• Impedance parameters are controlled so that the human arm can move naturally (like Minimum-Jerk Trajectory [Flash and Hogan 85])

→ Valid only for a Specific Trajectory
Objective

Propose a Control Method to Implement Human-Friendly Characteristics on Robots for Cooperative Manipulation

- Effective for various trajectories

Our Approach

- Virtual Compliance Control [Hirabayashi 86]
- Real-Time Estimation of Human Motion based on the Minimum Jerk Model
2. Virtual Compliance Control

Virtual Compliance Control [Hirabayashi 86]

Implement Impedance Characteristics on Conventional Position-Controlled Manipulators by Force Sensors

\[M \frac{(x_{n+1} - x_n) - (x_n - x_{n-1})}{(\Delta t)^2} + D \frac{x_n - x_{n-1}}{\Delta t} + K(x_n - \hat{x}_n) = f_n \]

- \(x_n\): position of robot
- \(f_n\): sensed force
- \(\hat{x}_n\): desired position of robot
- \(\Delta t\): sampling time
- \(M, C, K\): virtual impedance parameters
Desired Robot Position in Virtual Compliance Control

\[M \frac{(x_{n+1} - x_n) - (x_n - x_{n-1})}{(\Delta t)^2} + D \frac{x_n - x_{n-1}}{\Delta t} + K(x_n - \hat{x}_n) = f_n \]

\(x_n \) : position of robot
\(\hat{x}_n \) : desired position of robot

\[K = O \quad \text{(Direct Teaching Mode)} \]

Real-time generation of desired trajectory \((\hat{x}_n)\) based on motion estimation

More Active Control

Passive Compliant Motion

... Passive Compliant Motion (Direct Teaching Mode)
3. Estimation of Human Motion

Minimum Jerk Model [Flash and Hogan 85]

\[J = \int_0^{t_f} \| \dddot{x} \|^2 dt \rightarrow \text{min} \]

Point-to-Point Movement

\[x = f(t; t_f, x_f) \]
\[= -\left\{ 15 \left(\frac{t}{t_f} \right)^4 - 6 \left(\frac{t}{t_f} \right)^5 - 10 \left(\frac{t}{t_f} \right)^3 \right\} x_f \]

- \(x_f \): goal position
- \(t_f \): duration of movement
Minimum jerk model is also appropriate to human-robot cooperative manipulation [Rahman 99]

Desired trajectory of virtual compliance control: minimum jerk trajectory

However…

Trajectory that human intends is unknown to robot

Estimate the human motion in real-time
Parameter Identification for Motion Estimation

Identify two Parameters of the Minimum Jerk Model in Real-Time

\[x_f : \text{goal position} \]
\[t_f : \text{duration of movement} \]

Non-Linear Least-Squares Method
(Levenberg-Marquardt Method)

Residual:
\[\sum_{i=0}^{n} \left(\frac{\| x_i - f(i\Delta t; t_f, x_f) \|}{\alpha^{n-i}} \right)^2 \rightarrow \min \]

\[\hat{x}_n = f(n\Delta t) \]

\(\alpha \): forgetting factor
Control of Virtual Stiffness

- First stage: Motion estimation may cause unstable motion
- Last stage: Motion estimation may prevent positioning

\[K = aK_0 \]

“active” control with estimation

“passive” control without estimation

(start time) (estimated) goal time
4. Experiments of Cooperative Manipulation

Cooperative Manipulation

Horizontal One-Dimensional Transportation

- To a goal position unknown to the robot
- At arbitrary speed
Experimental Setup

Experimental Setup Diagram

- **Robot Controller** (Js-2) connected to a **PC (Linux)** via **VME bus** and **RS-232C**
- **Force Sensors** attached to the object
- **Video Tracker** linked to a **PC (Linux)**
- **Cameras** for monitoring

For robot control

Only for evaluation of results

Specifications

- **Sampling Time of Force Sensor** = 2 [ms]
- **Control Interval of Manipulator** = 16 [ms]
Virtual Impedance Parameters

\[
M = \begin{bmatrix}
1.79 & 0 & 0 \\
0 & 1.79 & 0 \\
0 & 0 & 1.79
\end{bmatrix} \text{ [kg]}
\]

\[
D = \begin{bmatrix}
48.0 & 0 & 0 \\
0 & 48.0 & 0 \\
0 & 0 & 48.0
\end{bmatrix} \text{ [Ns/m]}
\]

\[
K = \begin{bmatrix}
0 \sim 800 & 0 & 0 \\
0 & 0 \sim 800 & 0 \\
0 & 0 & 0 \sim 800
\end{bmatrix} \text{ [Nm]}
\]
Movie: Cooperative Manipulation
Experimental Results (Velocity)

with Estimation
Both human and robot trajectories are similar to minimum-jerk one
“light” to manipulate

without Estimation
Human trajectory is not similar to minimum-jerk one
“heavy” to manipulate
5. Quantitative Evaluation of Experimental Results

Necessary/Unnecessary Energy Transfer

\[
E_{\text{unnecessary}} = \frac{1}{2} \int (|E_h - E_r| - |E_h + E_r|) dt
\]

⇒ Performance Index of “good” cooperation
Energy Transfer in Cooperative Manipulation

with Estimation

without Estimation
Unnecessary Energy Transfer with/without Motion Estimation

Motion estimation reduces unnecessary energy transfer

Improvement of Human Feeling
6. Conclusion

Summary

• A robot control method with human-friendly characteristics for cooperative manipulation was proposed
 - Real-Time Estimation of Human Motion based on the Minimum Jerk Model
 - Virtual Compliance Control using the Estimated Trajectory
• The proposed method was experimentally tested on a conventional 6-DOF manipulator with a force sensor
• Improvement of human-friendliness was quantitatively evaluated from the viewpoint of “unnecessary energy transfer”
Future Works

• More Complex Manipulation
• Stability against Impulsive Disturbances

Acknowledgments

This research was partly supported by HMS (Holonic Manufacturing Systems) project of IMS and The Hara Research Foundation.